
ESP Accelerator Specifications

Copyright © 2011-2020 Columbia University
System Level Design Group

January 6, 2025

E S P

Contents

1 Introduction 2
1.1 Conventions . 3

2 ESP Accelerator Specifications 4
2.1 Accelerator Model . 4

2.1.1 Accelerator Configuration . 5
2.1.2 Private Local Memory . 5

2.2 DMA Transactions . 6
2.2.1 DMA User Field . 7

1

1. Introduction

This document describes the signal-level protocol specification of an ESP accelerator. The guide is intended for
RTL designers who wish to implement a native ESP accelerator using a hardware-description language, such as
SystemVerilog, or VHDL. Any accelerator that complies with the protocol specification described in this guide can
be integrated in ESP and leverage all platform services through the ESP accelerator socket.

This document does not describe the ESP third-party accelerator flow. The latter enables the seamless integration
of an existing accelerator IP leveraging an ARM AMBA open standard interface.

2

ESP: the open-source SoC platform E S P

1.1 Conventions

• bitwidth: number of bits. This is typically associated to a signal, or to a unit of data.

• token: the unit of input or output data transferred between the accelerator and the ESP socket. The bitwidth
of a token depends on the particular accelerator and may vary across different transactions over a bus or data
channel.

• beat: the unit of data transferred on a bus, or a data channel. The bitwidth of one beat depends on the
particular implementation of the accelerator (e.g. dma32 or dma64) and not on the data type of the input or
output token in a transaction. Therefore, for any given implementation of an ESP accelerator, the bitwidth of
a beat is constant.

• flit: the unit of data transferred over a network-on-chip (NoC). For ESP accelerators, the bitwidth of a flit is
equal to the bitwidth of a beat plus two bits. These additional bits indicate if the flit is the head, part of the
body, or the tail of a packet.

• packet: a set of flits transferred in an ordered sequence across the NoC. Packets must have one header flit,
one tail flit and as many body flits as necessary. Single-flit packets have just one flit with both head and tail
bits set. A packet that is granted a link of the NoC will traverse such link from head to tail not interleaved
with another packet.

• initiator or master: a component that can initiate a transaction over a bus, or a NoC.

• target or slave: a component that servers a transaction initiated by a master.

• latency-insensitive channel (LIC): a bundle of data wires and two control wires named ready and valid.
During read transactions, the master drives the ready control signal, while the slave drives the data and the
paired valid control signal. Roles are inverted for write transactions. A beat is transferred over a LIC when
both ready and valid are set. Both master and slave have the ability to delay the transfer of a beat for as many
cycles as necessary. For more on latency-insensitive channels please refer to [Carloni, 2015].

• CSR: configuration and/or status register.

• DMA: the acronym for direct-memory access. When referring to an ESP accelerator, the term DMA refers to
the mechanism used by the accelerator to access data in the system memory hierarchy. A DMA transaction
initiated by an accelerator in ESP may be accessing external memory directly or by mediation of the ESP cache
hierarchy. The selection is managed by software at run time and is transparent to the accelerator.

• PLM: the accelerator’s private local memory, composed of a set of SRAM bank groups customized for the
accelerator’s datapath.

3

2. ESP Accelerator Specifications

2.1 Accelerator Model

The block diagram of Figure 2.1 illustrates the ESP accelerator socket and shows the three main set of signals at the
interface of an ESP accelerator: read and write port for data transfers through DMA requests, configuration port
and interrupt line.

accelerator

cache

coherence
protocol

1 2 3

TLB DMA engine

6

cfg
regs IRQ

coherent
DMA

IO/IRQ

doneread/write port config port

bank

bankbank

bank
PLM

N
o

C4 5 5 4
non-coherent

DMA

ESP Accelerator Socket

req reqresp resp

acc

mem

coreaux

Figure 2.1: Block diagram of ESP accelerator tiles

A typical ESP accelerator is composed of three control blocks (configuration, load, store), one or more computation
blocks and a customized private local memory (PLM).

Once configuration registers are valid, the configuration block activates the other components. The load module
initiates the first DMA transaction to fetch the input data, or a portion of it, from the system memory hierarchy into
the PLM. Next, the computation blocks process the available input and produce the corresponding output. Finally,
the store block writes back the output to the system memory hierarchy with a DMA request. A single accelerator
invocation from software typically results into multiple iterations of load, compute and store phases, therefore we
recommend implementing a portion of the PLM as a set of ping-pong buffers to enable pipelining. Depending on
the particular task and accelerator implementation, this strategy may significantly improve the overall accelerator
throughput by masking most of the time for data transfers with the overlapping computation steps.

The above accelerator model corresponds to what ESP automation provides through any of the available high-level
synthesis flows. RTL designers are not required to follow these directions, as long as they comply with the signal-level
protocol at the interface with the ESP socket.

4

ESP: the open-source SoC platform E S P

2.1.1 Accelerator Configuration

The configuration block regulates the accelerator execution and implements the interface with software by sampling
the value of common and user-defined configuration registers located in the ESP socket.

Table 2.1: Description of the ESP accelerator configuration port.
Signal Driver Description

clk socket accelerator clock.

rst socket accelerator reset active low. The socket activates this
reset signal when software clears the interrupt request to
ensure that the accelerator is ready for a new invocation
and internal state is clean. If the accelerator is expected to
retain its state across different invocations, a user-defined
configuration register can be used to implement a software-
controlled reset signal.

conf done socket Configuration registers are valid and computation can
start. This signal is active high and asserted for one clk

cycle to trigger the accelerator execution.

conf info <register name> socket User-defined configuration input. The corresponding
memory-mapped configuration registers are automatically
generated in the ESP socket when creating the SoC in-
stance. There can be up to 14 user-defined registers that
must be listed in the accelerator definition XML file. For
each register the accelerator must expose one conf info

input. Bitwidth must be between 1 and 32 bits. These in-
puts should be considered valid when the conf done input
is active high.

acc done accelerator Single-cycle pulse active high. This flag indicates that the
accelerator has completed its task. The pulse should occur
only after the last DMA write transaction has completed
and all output data have been transferred from the PLM
to the memory hierarchy. Asserting acc done will trigger
an interrupt request to the interrupt controller located in
the ESP auxiliary tile. The software interrupt handler is
responsible for clearing the interrupt, thus resetting the
state of the socket and activating the rst input of the ac-
celerator.

debug accelerator 32-bit debug output. The accelerator designer can use this
output to encode error codes. The state of this output can
be accessed through the common memory-mapped regis-
ters present in the socket.

2.1.2 Private Local Memory

The PLM can be generated with the ESP Memgen utility, which combines SRAM primitives available as part of the
target technology libraries. Alternatively, the accelerator designer can manually implement the PLM in RTL.

The PLM is not memory mapped, hence it is not exposed to software. Furthermore, the PLM is not part of the SoC
cache hierarchy as it is solely intended as a customized working buffer for the accelerator data path. As a result, the
PLM has no external interface exposed to the ESP accelerator socket and RTL designers are not required to comply
with any hierarchy convention or signal-level protocol to implement the PLM, unless they use the ESP Memgen utility
(refer to the ESP Memory Generator documentation for further information). Accelerators that operate on small
batches of data and don’t have particular buffering requirements can also be implemented without a PLM.

5

ESP: the open-source SoC platform E S P

2.2 DMA Transactions

Table 2.2: Encoding of DMA size
Encoding Name Bitwidth

000 BYTE 8

001 HWORD 16

010 WORD 32

011 DWORD 64

The master of a direct-memory access (DMA) transaction is always an
accelerator. The accelerator initiates a DMA read transfer through the
rd ctrl channel and a DMA write transfer through the wr ctrl channel.
Tables 2.2 and 2.3 describe the fields and the encoding of the two control
channels.

DMA control channels are LIC that follow a simple proto-
col [Carloni, 2015]: when both valid and ready control signals are set,
the value of the data bus is sampled by the slave. From the accelera-
tor view point valid and ready are independent and there should be no
combinational path between the two signals.

An ESP accelerator does not issue requests using physical addresses. The field index of the control channels indicates
an offset with respect to a virtual memory region reserved for the accelerator. The ESP device driver allocates
this region in virtual pages and generates a corresponding page table. The ESP accelerator socket handles address
translation, therefore the accelerator can operate as if the reserved area was contiguous.

Table 2.3: Description of the DMA control channels rd ctrl and wr ctrl.
Signal Driver Description

dma [read|write] ctrl data index accelerator Offset of a DMA read or write transaction expressed as
number of beats. This offset is used to compute the starting
address of the transaction.

dma [read|write] ctrl data length accelerator Length of a DMA read or write transaction expressed as
number of beats.

dma [read|write] ctrl data size accelerator Bitwidth of the data token for the DMA transaction. This
signal is used to correct the NoC flits when the processor
architecture follows the big endian convention to store data
in memory. This signal follows the encoding in Table 2.2.

dma [read|write] ctrl data user accelerator This field gives the accelerator control over the data access
mode used to load/store data from/to the SoC. On the
read channel, this field specifies the source of the data. On
the write channel, it specifies the number of consumers of
the data. More details are presented in Section 2.2.1.

dma [read|write] ctrl valid accelerator Flag indicating a new DMA transaction request. When set,
all data fields must be valid. This flag must not depend
combinationally on the corresponding ready signal.

dma [read|write] ctrl ready socket Flag indicating that the ESP socket is ready to accept a
new DMA request. This flag must not depend combina-
tionally on the corresponding valid signal.

6

ESP: the open-source SoC platform E S P

For an accelerator with N-bits DMA interface (e.g. 64 bits), the physical address in bytes of a DMA transaction is
computed by the ESP socket as follows:

addr = walk accelerator ptable(index ∗N/8) (2.1)

The user-level driver is responsible to prepare data in memory using the same offsets used for DMA transfers by
the accelerator. Offset calculation can be defined at design time by hard-coding the logic to compute offsets in
the accelerator. Alternatively, offsets can be computed in software and configured at run time through user-defined
control and status registers (CSRs).

clk

rd ctrl index[31:0] 0x0 0x10

rd ctrl length[31:0] 2 2

rd ctrl size[2:0] 010 011

rd ctrl user[4:0] 0 7

rd ctrl valid

rd ctrl ready

rd chnl data[63:0] d0, d1 d2, d3 d4 d5

rd chnl valid

rd chnl ready

clk

wr ctrl index[31:0] 0x0 0x10

wr ctrl length[31:0] 2 2

wr ctrl size[2:0] 010 011

wr ctrl user[4:0] 0 6

wr ctrl valid

wr ctrl ready

wr chnl data[63:0] d0, d1 d2, d3 d4 d4

wr chnl valid

wr chnl ready

Symmetrically, when a DMA read transfer is configured, the accelerator must transfer the exact number of beats set
with the length field. Data beats are transferred through the DMA write channel by setting the valid flag high when
the corresponding data signal is valid. A beat is transferred when both valid and ready are set during the same cycle.
No restriction is imposed on the throughput of the transfer. The accelerator must hold valid data on the DMA write
channel when the socket is not ready to sample it. This condition may occur in case of contention for NoC links, or
external memory channels.

Figure 2.2 and 2.2 show two examples of DMA read and DMA write transactions. Signals in blue are driven by the
socket, while signals in black are driven by the accelerator. Dotted lines indicate back-pressure, which can be applied
by either the accelerator or the socket.

2.2.1 DMA User Field

ESP supports 3 basic types of accelerator communication: 1) direct memory access (DMA), 2) point-to-point (P2P)
communication [Giri et al., 2020] from one accelerator to another, and 3) multicast communication from one acceler-
ator to several others. Traditionally, the accelerator’s communication mode is set through configuration registers and
is fixed for the entire duration of an accelerator invocation. Beginning with ESP release 2025.1.0, the communication

7

ESP: the open-source SoC platform E S P

mode instead can be selected by the accelerator itself through the user fields on the DMA read and write control
channels [Zuckerman et al., 2024]. This feature is optional, however, and the user field can be tied to zero on both
control channels to default to the settings specified by the configuration registers.

On the read control channel, the user field specifies the source of the data. A value of zero defaults to the configuration
register settings (memory or P2P). Any value greater indexes into a small lookup table that is implemented in
configuration registers in the accelerator socket. Each entry in the lookup table is an X-Y pair that specifies the tile
coordinates of a source in the SoC. Entry 0 of this table is hard-coded to always hold the local tile’s coordinates;
other entries must be programmed by SW prior to the accelerator invocation. The coordinates obtained from using
the user field to index into this table are then used to formulate a P2P data request to the selected source.

On the write control channel, the user field specifies the number of consumers of the data. A value of zero defaults
to the configuration register settings (memory or P2P). A value of 1 indicates a standard P2P request, while any
value greater specifies a multicast transfer, in which all consumers will receive the same data using a single message
on the NoC. When a non-zero value is specified, the DMA controller (socket) will wait for the specified number of
P2P requests to be received before sending the write data on the NoC.

For further information on this feature, please see the ESP release for code examples, the hands-on tutorials on the
ESP website (coming soon), and the two papers cited above.

8

Bibliography

[Carloni, 2015] Carloni, L. P. (2015). From latency-insensitive design to communication-based system-level design.
Proceedings of the IEEE, 103(11):2133–2151.

[Giri et al., 2020] Giri, D., Chiu, K.-L., Guglielmo, G. D., Mantovani, P., and Carloni, L. P. (2020). ESP4ML:
Platform-based design of systems-on-chip for embedded machine learning.

[Zuckerman et al., 2024] Zuckerman, J., Wellman, J.-D., Vanamali, A., Shankar, M., Tombesi, G., Swaminathan, K.,
Lee, K., Kapur, M., Philhower, R., Bose, P., and Carloni, L. P. (2024). Towards generalized on-chip communication
for programmable accelerators in heterogeneous architectures.

9

	Introduction
	Conventions

	ESP Accelerator Specifications
	Accelerator Model
	Accelerator Configuration
	Private Local Memory

	DMA Transactions
	DMA User Field

