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Heterogeneous Architectures Are Emerging Everywhere
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[ Source: 
https://cloudplatform.googleblog.com/ ]

[ Source: www.microsoft.com/ ]
[ Source: https://aws.amazon.com/ec2/instance-types/f1/ ]

[ Source: www.mobileye.com/]

[ Source: “Xeon+FPGA Tutorial @ ISCA’16” ] [ Source: www.xilinx.com/ ]

[ Source: https://blogs.nvidia.com/ ]



From Microprocessors to Systems-on-Chip (SoC)
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The Growth of Specialized IP Blocks: The Apple A8 SoC

©Luca Carloni

Number of specialized IP blocks across five generations of Apple SoCs

[ Source: Shao et al. 2015]

Out-of-Core
Accelerators

• The analysis of die photos from Apple’s A6, A7, and A8 
SoCs shows that more than half of the die area is 
dedicated to blocks that are neither CPUs nor GPUs, but 
rather specialized Intellectual Property (IP) blocks

• Many IP blocks are accelerators, i.e. specialized hardware 
components that execute an important computation 
more efficiently than software



The Age of Heterogeneous Computing
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• The migration from homogeneous multi-core architectures to 
heterogeneous System-on-Chip architectures will accelerate, 
across almost all computing domains 
• from IoT devices, embedded systems and mobile devices to data centers and 

supercomputers

• A heterogeneous SoC will combine an increasingly diverse set of 
components
• different CPUs, GPUs, hardware accelerators, memory hierarchies, I/O 

peripherals, sensors, reconfigurable engines, analog blocks… 

• The set of heterogeneous SoCs in production in any given year 
will be itself heterogeneous!
• no single SoC architecture will dominate all the markets



Where the Key Challenges in SoC Design Are…

©Luca Carloni

• The biggest challenges are (and will increasingly be) 
found in the complexity of system integration

– How to design, program and validate scalable systems that combine a 
very large number of heterogeneous components to provide a  solution 
that is specialized for a target class of applications?

• How to handle this complexity?
– raise the level of abstraction to System-Level Design

– adopt compositional design methods with the Protocol & Shell Paradigm 

– promote Design Reuse



What is Needed?   To Think at the System Level.

©Luca Carloni

• Move from a processor-centric to an SoC-centric perspective

– The processor core is just one component among many others

• Develop platforms, not just architectures

– A platform combines an architecture and a companion design 
methodology

• Raise the level of abstraction

– Move from RTL Design to System-Level Design

• Promote Open-Source Hardware 

– Build libraries of reusable components
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The ESP Scalable Architecture Template
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Template Properties
• Regularity

– tile-based design
– pre-designed on-chip 

infrastructure for communication 
and resource management

• Flexibility
– each ESP design is the result of a 

configurable mix of 
programmable tiles and 
accelerator tiles

• Specialization
– with automatic high-level 

synthesis of accelerators for key 
computational kernels

• Processor Tiles
– each hosting at least one configurable 

processor core capable of running an OS

• Accelerator Tiles
– synthesized from high-level specs

• Other Tiles
– memory interfaces, I/O, etc.

• Network-on-Chip (NoC)
– playing key roles at both design and run time

Possible Instance of an ESP Chip 



Example of a System We Built:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

©Luca Carloni

• Design:  Complete design of 
WAMI-App running on an FPGA 
implementation of an ESP 
architecture 

– featuring 1 embedded processor, 
12 accelerators, 1 five-plane NoC, 
and 2 DRAM controllers 

– SW application running on top of 
Linux while leveraging multi-
threading library to program the 
accelerators and control their 
concurrent, pipelined execution

– Five-plane, 2D-mesh NoC
efficiently supports multiple 
independent frequency domains 
and a variety of platform services

input output

Motion Detection from 
WAMI-Application

NoC Planes Traffic

Power per Domain

SoC Map

Sampling Window

Frame Buffer

Console Interface

FPGA Infrastructure

[P. Mantovani , L. P. Carloni et al., An FPGA-Based 
Infrastructure for Fine-Grained DVFS Analysis in 
High-Performance Embedded Systems, DAC 2016 ]
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ESP Architecture

• RISC-V Processors

• Many-Accelerator

• Distributed Memory

• Multi-Plane NoC

The ESP architecture implements a 
distributed system, which is scalable, 

modular and heterogeneous,
giving processors and accelerators 

similar weight in the SoC



©Luca Carloni

ESP Architecture: Processor Tile

• Processor off-the-shelf 
o RISC-V Ariane (64 bit)

SPARC V8 Leon3 (32 bit)

o L1 private cache

• L2 private cache
o Configurable size

o MESI protocol

• IO/IRQ channel
o Un-cached

o Accelerator config. registers, 

interrupts, flush, UART, …
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ESP Architecture: Memory Tile

• External Memory Channel

• LLC and directory partition
o Configurable size

o Extended MESI protocol 

o Supports coherent-DMA 

for accelerators

• DMA channels

• IO/IRQ channel
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ESP Architecture: Accelerator Tile

• Accelerator Socket 

w/ Platform Services

o Direct-memory-access

o Run-time selection of 

coherence model:

 Fully coherent

 LLC coherent

 Non coherent

o User-defined registers

o Distributed interrupt



The Twofold Role of the Network-on-Chip
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• At Design Time
– simplifies integration of 

heterogeneous tiles to 
balance regularity and 
specialization 

• At Run Time
– energy efficient inter-tile 

data communication with 
integrated support for fine-
grain power management 
and other services

• A scalable NoC is instrumental to accommodate heterogeneous concurrency 
and computing locality in ESP

• The NoC Interface interacts directly with the Tile Socket that supports the ESP Platform Services 
– communication/synchronization channels among tiles
– fine-grain power management with dynamic voltage-frequency scaling
– seamless dynamic support for various accelerator coherence models



Heterogeneous Applications Bring Heterogeneous Requirements
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Structure and Behavior of the Debayer Accelerator Data Structures of the PERFECT TAV Benchmarks

• While the Debayer structure and behavior is 
representative of the other benchmarks, the 
specifics of the actual computations, I/O patterns, 
and scratchpad memories vary greatly among them



How to Couple Accelerators, Processors and Memories?
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• Private local memories (aka 
scratchpads) are key to 
performance and energy 
efficiency of accelerators

• There are two main models of 
coupling accelerators with 
processors, memories
• Tightly-Coupled Accelerators

• Loosely-Coupled Accelerators

[ E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. 
Carloni,  An Analysis of Accelerator Coupling in 
Heterogeneous Architectures, DAC’15]

Loosely-Coupled Accelerators (LCA)

Tightly-Coupled Accelerators (TCA)



The Key Role of the Private Local Memories (PLM) 
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• Tailored, many-ported PLMs are key 
to accelerator performance

• A scratchpad features aggressive 
SRAM banking that provides multi-
port memory accesses to match the 
multiple parallel blocks of the 
computation datapath

– Level-1 caches cannot match this 
parallelism

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-
Level Optimization of Accelerator Local Memory for Heterogeneous 
Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and 
Systems, 2017. ]

Private Local Memory
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ESP Accelerator Socket



©Luca Carloni

Miscellaneous Tile

ESP Platform Services

Memory Tile

Accelerator tile Processor Tile
DMA

Reconfigurable coherence

Point-to-point

ESP or AXI interface

DVFS controller

Coherence

I/O and un-cached memory

Distributed interrupts

DVFS controller

Debug interface

Performance counters access

Coherent DMA
Shared peripherals (UART, ETH, 

…)

Independent DDR Channel

LLC Slice

DMA Handler
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ESP Software Socket
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Linux

ESP core

ESP accelerator driver
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ESP alloc

ESP Library

Application 

• ESP accelerator API

o Generation of device driver 

and unit-test application

o Seamless shared memory

/*

* Example of existing C application with ESP 

* accelerators that replace software kernels 2, 3, 

* and 5. The cfg_k# contains buffer and the

* accelerator configuration. 

*/

{

int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software  */

esp_run(cfg_k2);      /* run accelerator(s) */

esp_run(cfg_k3);

kernel_4(buffer,...); /* existing software  */

esp_run(cfg_k5);

}

validate(buffer);       /* existing checks    */

esp_free();          /* memory free        */

}



Cache Coherence and Loosely-Coupled Accelerators
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• An analysis of the literature indicates that there are three main cache-
coherence models for loosely-coupled accelerators: 

1. Non-Coherent Accelerator

– the accelerator operates through DMA bypassing the processor caches

2. Fully-Coherent Accelerator

– the accelerator issues main-memory requests that are coherent with the entire cache 
hierarchy

• this approach can endow accelerators with a private cache, thus requiring no updates to the 
coherence protocol

3. Last Level Cache (LLC)-Coherent Accelerator

– the accelerator issues main-memory requests that are coherent with the LLC, but not 
with the private caches of the processors 

• in this case, DMA transactions address the shared LLC, rather than off-chip main memory



Example: NoC Services to Support Heterogeneous  
Cache-Coherence Models for Accelerators
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[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators & 
Coherence: An SoC Perspective. IEEE MICRO, 2018. ]

• Seamless dynamic support 
for 3 coherence models:

– Fully coherent accelerators

– Non-coherent accelerators

– Last-Level-Cache (LCC) 
coherent accelerators 

Network-on-Chip



Extending ESP to Support Heterogeneous 
Cache-Coherence Models for Accelerators 

©Luca Carloni

• First NoC-based system enabling 
the three models of coherence for 
accelerators to coexist and operate 
simultaneously through run-time 
selection in the same SoC

– design based on ESP Platform Services 

• Extension of the MESI directory-
based protocol to integrate LLC-
coherent accelerators into an SoC

– the design leverages the tile-based 
architecture of ESP to guarantee 
scalability and modularity



Heterogeneous Coherence Implementation
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• The CAD Infrastructure of ESP 
allows 

– direct instantiation of heterogeneous 
configurable components from 
predesigned libraries

– fully automated flow from the GUI to 
the bitstream for FPGAs

• Extension of ESP to support 
atomic test-and-set and 
compare-and-swap operations 
over the NoC allows

– running multi-processor and 
multi-accelerator applications 
on top of Linux SMP

[D. Giri, P. Mantovani, L. P. Carloni, Accelerators & 
Coherence: An SoC Perspective, IEEE Micro, Nov/Dec 2018]
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ESP Vision: Domain Experts Can Design SoCs

Rapid
Prototyping

SoC Integration

A
p

p
lic

at
io

n
 D

ev
el

o
p

er
s

H
ar

d
w

ar
e

D
es

ig
n

er
s

*
*

 B
y 

le
w

in
g

@
is

c.
ta

m
u

.e
d

u
L

ar
ry

 E
w

in
g

 a
n

d
 T

h
e 

G
IM

P

**

…

…

…accelerator

accelerator

accelerator
HLS

Design
Flows

RTL
Design
Flows

*
 B

y 
N

vi
d

ia
 C

o
rp

o
ra

ti
o

n

*



©Luca Carloni

Our System-Level Design Approach to Heterogeneous 
Computing: Key Ingredients

• Develop Platforms, not just Architectures
• A platform combines an architecture and a companion design methodology

• Raise the level of abstraction
• Move from RTL Design to System-Level Design
• Move from Verilog/VHDL to high-level programming languages like SystemC
• Move from ISA and RTL simulators to Virtual Platforms
• Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is 

the key to enabling rich design-space exploration

• Adopt compositional design methods
• Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous 

components

• Use formal metrics for design reuse
• Synthesize Pareto frontiers of optimal implementations from high-level specs 

• Build real prototypes (both chips and FPGA-based full-system designs)
• Prototypes drive research in systems, architectures, software and CAD tools 



ESP Methodology In Practice

©Luca Carloni

interactive
automated

manual
manual (opt.)

Generate accelerator

Test behavior

Generate RTL

Test RTL

Optimize RTL

Specialize accelerator
* this step is automated
* for ML applications

Accelerator Flow
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ESP Design Example: An Accelerator for WAMI

©Luca Carloni

• We designed 12 accelerators starting from a C “programmer-view” reference 
implementation

• Methodology to port C into synthesizable SystemC

• Automatic generation of customized RTL memory subsystems for each accelerator

Debayer

Change-Detection

Warp 
(grayscale)

Gradient

Subtract Warp (dx) Warp (dy)

Steep.-
Descent

SD-update Hessian

Matrix-
Mult

Matrix-
Invert

Reshape

Matrix-Add

Warp (iwxp)

fe
ed
b
a
ck

fe
ed
b
a
ck

feedback

Grayscale

Lucas-Kanade

fe
ed
b
a
ck

input output

Lines of Code
Kernels C SystemC RTL
Debayer 195 664 8440
Grayscale 21 368 4079
Warp 88 571 6601
Gradient 65 540 12163
Subtract 36 379 4684
Steep.-Descent 34 410 8744
SD-Update 55 383 7864
Hessian 43 358 7042
Matrix-Invert 166 388 7392
Matrix-Mult 55 307 2708
Reshape 42 269 2160
Matrix-Add 36 287 2310
Change-Detect. 128 939 18416

Total 964 5863 92603

[P. Mantovani, G. Di Guglielmo, and L. P. Carloni, High-Level Synthesis 
of Accelerators in Embedded Scalable Platforms, ASPDAC 2016]

• The PERFECT WAMI-app is an image processing pipeline in behavioral C 
code

• From a sequence of frames it extracts masks of “meaningfully” changed 
pixels

• Complex data-dependency among kernels

• Computational intensive matrix operations

• Global-memory access to compute ratio 45%

• Floating-point operation to compute ratio 15%



Example of Accelerator Design with HLS: Debayer - 1

©Luca Carloni

• The 3 processes execute in pipeline
– on a 2048×2048-pixel image, which 

is stored in DRAM, to produce the 
corresponding debayered version

• The circular buffer allows the reuse 
of local data, thus minimizing the 
data transfers with DRAM

• The ping-pong buffer allows the 
overlapping of computation and 
communication



ESP Accelerator Flow
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Developers focus on the high-level specification, decoupled from

memory access, system communication, hardware/software interface
A
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Example of Design-Space Exploration with HLS: 
Accelerator for the SAR Interp-1 Kernel

©Luca Carloni

Pareto Set Obtained with 
High-Level Synthesis 

(1GHz@1V, CMOS 32nm)
function interp1()

{

for(...)

{

accum = 0;

for(...)

{

accum += sinc(input);

}

store(accum);

}

}

Main loop in Interpolation-1 kernel

• Presence of expensive combinational 
function (sinc() ) in the inner most loop

• Use of “loop knobs” provided by HLS  tools 
to optimize for power and performance

• Derivation of Pareto set highlighting Power-
Performance trade-offs



Retrospective: Latency-Insensitive Design         [Carloni et al. ’99]
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C1
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C4
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Latency-Insensitive Design 

• is the foundation for the flexible synthesizable RTL 
representation

• anticipates the separation of computation from 
communication that is proper of TLM with SystemC

– through the introduction of the Protocols & Shell 
paradigm



Example: Combining LID and HLS  in the Design 
of the Debayer Accelerator
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• The combination of the ESP interface and 
the latency-insensitive protocol enable a 
broad HLS-supported design-space 
exploration

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level Optimization of 
Accelerator Local Memory for Heterogeneous Systems-on-Chip, TCAD ’17]

• For example, for the compute process
– Implementation E is obtained by unrolling loop 

L3 for 2 iterations, which requires 2 concurrent 
memory-read operations 

– Implementation F is obtained by unrolling L3 for 
4 iterations to maximize performance at the cost 
of more area, but with only 2 memory-read 
interfaces; this creates a bottleneck because the 
4 memory operations cannot be all scheduled in 
the same clock cycle

– Implementation G, which Pareto-dominates 
implementation F, is obtained by unrolling L3 for 
4 iterations and having 4 memory-read 
interfaces to allow the 4 memory-read 
operations to execute concurrently



Combines              and 

• ESP is a platform for heterogeneous SoC 
design 

• hls4ml automatically generates 
accelerators from ML models

Main contributions to ESP:
• Automated integration of hls4ml 

accelerators

• Accelerator-accelerator communication

• Accelerator invocation API

Open-source design flow to build and 
program SoCs for ML applications.

ESP4ML

38

[D. Giri, K.-L. Chiu, G. Di Guglielmo, P. Mantovani, and L. P. Carloni. ‘’ESP4ML: Platform-Based 
Design of Systems-on-Chip for Embedded Machine Learning’’, DATE ’20]

©Luca Carloni



Seamless Integration of Third-Party Accelerators
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Scaling NVDLA instances and DDR channels
@ 50 MHz

• New design flow of general 
applicability

– demonstrated w/ NVIDIA NVDLA

• Transparent accelerator integration
– original software apps can run “as is”

• Linear performance scalability 
– when scaling up 

NVDLA instances 
with DDR channels

[D. Giri et al. ‘’Ariane + NVDLA: Seamless 
Third-Party IP Integration with ESP’’, 
CARRV’20]
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ESP Interactive SoC Flow

SoC Integration
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accelerator

accelerator



In Summary: ESP for Open-Source Hardware
• We contribute ESP to the OSH 

community in order to support the 
realization of
• more scalable architectures for SoCs

that integrate 

• more heterogeneous components, 
thanks to a 

• more flexible design methodology, 
which accommodates different 
specification languages and design flows

• ESP was conceived as a heterogeneous 
integration platform from the start and 
tested through years of teaching at 
Columbia University

• We invite you to use ESP for your 
projects and to contribute to ESP!

©Luca Carloni

https://www.esp.cs.columbia.edu



System Level Design Group

Thank you from the ESP team!

https://esp.cs.columbia.edu

https://github.com/sld-columbia/esp

https://esp.cs.columbia.edu/
https://github.com/sld-columbia/esp

