
Open ESP
The Open-Source SoC Platform

Luca P. Carloni

UW-Madison Virtual Computer Architecture Seminar
September 22nd, 2020

Open Source Release of ESP

©Luca Carloni

https://www.esp.cs.columbia.edu

2. Proposed Architecture
• Embedded Scalable Platforms (ESP)

Outline

©Luca Carloni

3. Methodology and Design Flow
• with a Retrospective on

Latency-Insensitive Design

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

The Protocol & Shell
Paradigm

1. Motivation
• The Rise of Heterogeneous Computing

Heterogeneous Architectures Are Emerging Everywhere

©Luca Carloni

[Source:
https://cloudplatform.googleblog.com/]

[Source: www.microsoft.com/]
[Source: https://aws.amazon.com/ec2/instance-types/f1/]

[Source: www.mobileye.com/]

[Source: “Xeon+FPGA Tutorial @ ISCA’16”] [Source: www.xilinx.com/]

[Source: https://blogs.nvidia.com/]

From Microprocessors to Systems-on-Chip (SoC)

©Luca Carloni

[
S

o
u

rc
e:

 M
. B

o
h

r
2

0
0

9
]

S
o

u
rc

e
In

te
l.c

o
m

 [
P

. G
el

si
n

g
er

P
re

ss
 B

ri
ef

in
g

, M
ar

’0
8

]

The Growth of Specialized IP Blocks: The Apple A8 SoC

©Luca Carloni

Number of specialized IP blocks across five generations of Apple SoCs

[Source: Shao et al. 2015]

Out-of-Core
Accelerators

• The analysis of die photos from Apple’s A6, A7, and A8
SoCs shows that more than half of the die area is
dedicated to blocks that are neither CPUs nor GPUs, but
rather specialized Intellectual Property (IP) blocks

• Many IP blocks are accelerators, i.e. specialized hardware
components that execute an important computation
more efficiently than software

The Age of Heterogeneous Computing

©Luca Carloni

• The migration from homogeneous multi-core architectures to
heterogeneous System-on-Chip architectures will accelerate,
across almost all computing domains
• from IoT devices, embedded systems and mobile devices to data centers and

supercomputers

• A heterogeneous SoC will combine an increasingly diverse set of
components
• different CPUs, GPUs, hardware accelerators, memory hierarchies, I/O

peripherals, sensors, reconfigurable engines, analog blocks…

• The set of heterogeneous SoCs in production in any given year
will be itself heterogeneous!
• no single SoC architecture will dominate all the markets

Where the Key Challenges in SoC Design Are…

©Luca Carloni

• The biggest challenges are (and will increasingly be)
found in the complexity of system integration

– How to design, program and validate scalable systems that combine a
very large number of heterogeneous components to provide a solution
that is specialized for a target class of applications?

• How to handle this complexity?
– raise the level of abstraction to System-Level Design

– adopt compositional design methods with the Protocol & Shell Paradigm

– promote Design Reuse

What is Needed? To Think at the System Level.

©Luca Carloni

• Move from a processor-centric to an SoC-centric perspective

– The processor core is just one component among many others

• Develop platforms, not just architectures

– A platform combines an architecture and a companion design
methodology

• Raise the level of abstraction

– Move from RTL Design to System-Level Design

• Promote Open-Source Hardware

– Build libraries of reusable components

2. Proposed Architecture
• Embedded Scalable Platforms (ESP)

Outline

©Luca Carloni

3. Methodology and Design Flow
• with a Retrospective on

Latency-Insensitive Design

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

The Protocol & Shell
Paradigm

1. Motivation
• The Rise of Heterogeneous Computing

The ESP Scalable Architecture Template

©Luca Carloni

Template Properties
• Regularity

– tile-based design
– pre-designed on-chip

infrastructure for communication
and resource management

• Flexibility
– each ESP design is the result of a

configurable mix of
programmable tiles and
accelerator tiles

• Specialization
– with automatic high-level

synthesis of accelerators for key
computational kernels

• Processor Tiles
– each hosting at least one configurable

processor core capable of running an OS

• Accelerator Tiles
– synthesized from high-level specs

• Other Tiles
– memory interfaces, I/O, etc.

• Network-on-Chip (NoC)
– playing key roles at both design and run time

Possible Instance of an ESP Chip

Example of a System We Built:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

©Luca Carloni

• Design: Complete design of
WAMI-App running on an FPGA
implementation of an ESP
architecture

– featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC,
and 2 DRAM controllers

– SW application running on top of
Linux while leveraging multi-
threading library to program the
accelerators and control their
concurrent, pipelined execution

– Five-plane, 2D-mesh NoC
efficiently supports multiple
independent frequency domains
and a variety of platform services

input output

Motion Detection from
WAMI-Application

NoC Planes Traffic

Power per Domain

SoC Map

Sampling Window

Frame Buffer

Console Interface

FPGA Infrastructure

[P. Mantovani , L. P. Carloni et al., An FPGA-Based
Infrastructure for Fine-Grained DVFS Analysis in
High-Performance Embedded Systems, DAC 2016]

©Luca Carloni

ESP Architecture

• RISC-V Processors

• Many-Accelerator

• Distributed Memory

• Multi-Plane NoC

The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC

©Luca Carloni

ESP Architecture: Processor Tile

• Processor off-the-shelf
o RISC-V Ariane (64 bit)

SPARC V8 Leon3 (32 bit)

o L1 private cache

• L2 private cache
o Configurable size

o MESI protocol

• IO/IRQ channel
o Un-cached

o Accelerator config. registers,

interrupts, flush, UART, …

©Luca Carloni

ESP Architecture: Memory Tile

• External Memory Channel

• LLC and directory partition
o Configurable size

o Extended MESI protocol

o Supports coherent-DMA

for accelerators

• DMA channels

• IO/IRQ channel

©Luca Carloni

ESP Architecture: Accelerator Tile

• Accelerator Socket

w/ Platform Services

o Direct-memory-access

o Run-time selection of

coherence model:

 Fully coherent

 LLC coherent

 Non coherent

o User-defined registers

o Distributed interrupt

The Twofold Role of the Network-on-Chip

©Luca Carloni

• At Design Time
– simplifies integration of

heterogeneous tiles to
balance regularity and
specialization

• At Run Time
– energy efficient inter-tile

data communication with
integrated support for fine-
grain power management
and other services

• A scalable NoC is instrumental to accommodate heterogeneous concurrency
and computing locality in ESP

• The NoC Interface interacts directly with the Tile Socket that supports the ESP Platform Services
– communication/synchronization channels among tiles
– fine-grain power management with dynamic voltage-frequency scaling
– seamless dynamic support for various accelerator coherence models

Heterogeneous Applications Bring Heterogeneous Requirements

©Luca Carloni

Structure and Behavior of the Debayer Accelerator Data Structures of the PERFECT TAV Benchmarks

• While the Debayer structure and behavior is
representative of the other benchmarks, the
specifics of the actual computations, I/O patterns,
and scratchpad memories vary greatly among them

How to Couple Accelerators, Processors and Memories?

©Luca Carloni

• Private local memories (aka
scratchpads) are key to
performance and energy
efficiency of accelerators

• There are two main models of
coupling accelerators with
processors, memories
• Tightly-Coupled Accelerators

• Loosely-Coupled Accelerators

[E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P.
Carloni, An Analysis of Accelerator Coupling in
Heterogeneous Architectures, DAC’15]

Loosely-Coupled Accelerators (LCA)

Tightly-Coupled Accelerators (TCA)

The Key Role of the Private Local Memories (PLM)

©Luca Carloni

• Tailored, many-ported PLMs are key
to accelerator performance

• A scratchpad features aggressive
SRAM banking that provides multi-
port memory accesses to match the
multiple parallel blocks of the
computation datapath

– Level-1 caches cannot match this
parallelism

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-
Level Optimization of Accelerator Local Memory for Heterogeneous
Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and
Systems, 2017.]

Private Local Memory

©Luca Carloni

ESP Accelerator Socket

©Luca Carloni

Miscellaneous Tile

ESP Platform Services

Memory Tile

Accelerator tile Processor Tile
DMA

Reconfigurable coherence

Point-to-point

ESP or AXI interface

DVFS controller

Coherence

I/O and un-cached memory

Distributed interrupts

DVFS controller

Debug interface

Performance counters access

Coherent DMA
Shared peripherals (UART, ETH,

…)

Independent DDR Channel

LLC Slice

DMA Handler

©Luca Carloni

ESP Software Socket
k
e
rn

e
l

m
o

d
e

Linux

ESP core

ESP accelerator driver

u
s
e
r

m
o

d
e

ESP alloc

ESP Library

Application

• ESP accelerator API

o Generation of device driver

and unit-test application

o Seamless shared memory

/*

* Example of existing C application with ESP

* accelerators that replace software kernels 2, 3,

* and 5. The cfg_k# contains buffer and the

* accelerator configuration.

*/

{

int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software */

esp_run(cfg_k2); /* run accelerator(s) */

esp_run(cfg_k3);

kernel_4(buffer,...); /* existing software */

esp_run(cfg_k5);

}

validate(buffer); /* existing checks */

esp_free(); /* memory free */

}

Cache Coherence and Loosely-Coupled Accelerators

©Luca Carloni

• An analysis of the literature indicates that there are three main cache-
coherence models for loosely-coupled accelerators:

1. Non-Coherent Accelerator

– the accelerator operates through DMA bypassing the processor caches

2. Fully-Coherent Accelerator

– the accelerator issues main-memory requests that are coherent with the entire cache
hierarchy

• this approach can endow accelerators with a private cache, thus requiring no updates to the
coherence protocol

3. Last Level Cache (LLC)-Coherent Accelerator

– the accelerator issues main-memory requests that are coherent with the LLC, but not
with the private caches of the processors

• in this case, DMA transactions address the shared LLC, rather than off-chip main memory

Example: NoC Services to Support Heterogeneous
Cache-Coherence Models for Accelerators

©Luca Carloni

[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators &
Coherence: An SoC Perspective. IEEE MICRO, 2018.]

• Seamless dynamic support
for 3 coherence models:

– Fully coherent accelerators

– Non-coherent accelerators

– Last-Level-Cache (LCC)
coherent accelerators

Network-on-Chip

Extending ESP to Support Heterogeneous
Cache-Coherence Models for Accelerators

©Luca Carloni

• First NoC-based system enabling
the three models of coherence for
accelerators to coexist and operate
simultaneously through run-time
selection in the same SoC

– design based on ESP Platform Services

• Extension of the MESI directory-
based protocol to integrate LLC-
coherent accelerators into an SoC

– the design leverages the tile-based
architecture of ESP to guarantee
scalability and modularity

Heterogeneous Coherence Implementation

©Luca Carloni

• The CAD Infrastructure of ESP
allows

– direct instantiation of heterogeneous
configurable components from
predesigned libraries

– fully automated flow from the GUI to
the bitstream for FPGAs

• Extension of ESP to support
atomic test-and-set and
compare-and-swap operations
over the NoC allows

– running multi-processor and
multi-accelerator applications
on top of Linux SMP

[D. Giri, P. Mantovani, L. P. Carloni, Accelerators &
Coherence: An SoC Perspective, IEEE Micro, Nov/Dec 2018]

2. Proposed Architecture
• Embedded Scalable Platforms (ESP)

Outline

©Luca Carloni

3. Methodology and Design Flow
• with a Retrospective on

Latency-Insensitive Design

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

The Protocol & Shell
Paradigm

1. Motivation
• The Rise of Heterogeneous Computing

©Luca Carloni

ESP Vision: Domain Experts Can Design SoCs

Rapid
Prototyping

SoC Integration

A
p

p
lic

at
io

n
 D

ev
el

o
p

er
s

H
ar

d
w

ar
e

D
es

ig
n

er
s

*
*

 B
y

le
w

in
g

@
is

c.
ta

m
u

.e
d

u
L

ar
ry

 E
w

in
g

 a
n

d
 T

h
e

G
IM

P

**

…

…

…accelerator

accelerator

accelerator
HLS

Design
Flows

RTL
Design
Flows

*
 B

y
N

vi
d

ia
 C

o
rp

o
ra

ti
o

n

*

©Luca Carloni

Our System-Level Design Approach to Heterogeneous
Computing: Key Ingredients

• Develop Platforms, not just Architectures
• A platform combines an architecture and a companion design methodology

• Raise the level of abstraction
• Move from RTL Design to System-Level Design
• Move from Verilog/VHDL to high-level programming languages like SystemC
• Move from ISA and RTL simulators to Virtual Platforms
• Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is

the key to enabling rich design-space exploration

• Adopt compositional design methods
• Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous

components

• Use formal metrics for design reuse
• Synthesize Pareto frontiers of optimal implementations from high-level specs

• Build real prototypes (both chips and FPGA-based full-system designs)
• Prototypes drive research in systems, architectures, software and CAD tools

ESP Methodology In Practice

©Luca Carloni

interactive
automated

manual
manual (opt.)

Generate accelerator

Test behavior

Generate RTL

Test RTL

Optimize RTL

Specialize accelerator
* this step is automated
* for ML applications

Accelerator Flow

A
p

p
lic

at
io

n
 D

ev
e

lo
p

e
rs

H
ar

d
w

ar
e

D
es

ig
n

e
rs

HLS
Design
Flows

RTL
Design
Flows

…

…

…
accelerator

accelerator

accelerator

Compile bare-metal

Simulate system

Implement for FGPA

Generate sockets

Configure RISC-V SoC

SoC Flow
…

…

…
accelerator

accelerator

accelerator

Compile Linux

Deploy prototype

Configure runtime

**

ESP Design Example: An Accelerator for WAMI

©Luca Carloni

• We designed 12 accelerators starting from a C “programmer-view” reference
implementation

• Methodology to port C into synthesizable SystemC

• Automatic generation of customized RTL memory subsystems for each accelerator

Debayer

Change-Detection

Warp
(grayscale)

Gradient

Subtract Warp (dx) Warp (dy)

Steep.-
Descent

SD-update Hessian

Matrix-
Mult

Matrix-
Invert

Reshape

Matrix-Add

Warp (iwxp)

fe
ed
b
a
ck

fe
ed
b
a
ck

feedback

Grayscale

Lucas-Kanade

fe
ed
b
a
ck

input output

Lines of Code
Kernels C SystemC RTL
Debayer 195 664 8440
Grayscale 21 368 4079
Warp 88 571 6601
Gradient 65 540 12163
Subtract 36 379 4684
Steep.-Descent 34 410 8744
SD-Update 55 383 7864
Hessian 43 358 7042
Matrix-Invert 166 388 7392
Matrix-Mult 55 307 2708
Reshape 42 269 2160
Matrix-Add 36 287 2310
Change-Detect. 128 939 18416

Total 964 5863 92603

[P. Mantovani, G. Di Guglielmo, and L. P. Carloni, High-Level Synthesis
of Accelerators in Embedded Scalable Platforms, ASPDAC 2016]

• The PERFECT WAMI-app is an image processing pipeline in behavioral C
code

• From a sequence of frames it extracts masks of “meaningfully” changed
pixels

• Complex data-dependency among kernels

• Computational intensive matrix operations

• Global-memory access to compute ratio 45%

• Floating-point operation to compute ratio 15%

Example of Accelerator Design with HLS: Debayer - 1

©Luca Carloni

• The 3 processes execute in pipeline
– on a 2048×2048-pixel image, which

is stored in DRAM, to produce the
corresponding debayered version

• The circular buffer allows the reuse
of local data, thus minimizing the
data transfers with DRAM

• The ping-pong buffer allows the
overlapping of computation and
communication

ESP Accelerator Flow

©Luca Carloni

Developers focus on the high-level specification, decoupled from

memory access, system communication, hardware/software interface
A

p
p

lic
at

io
n

 D
ev

el
o

p
er

s
H

ar
d

w
ar

e
D

es
ig

n
er

s

HLS
Design
Flows

RTL
Design
Flows

Performance

A
re

a
 /

P
o

w
e

r

3

2

1 High-Level Synthesis

Code Transformation

Ver. 1

Ver. 2

Ver. 3

RTL
Design Space

Programmer View
Design Space

…

…
accelerator

accelerator

accelerator

Example of Design-Space Exploration with HLS:
Accelerator for the SAR Interp-1 Kernel

©Luca Carloni

Pareto Set Obtained with
High-Level Synthesis

(1GHz@1V, CMOS 32nm)
function interp1()

{

for(...)

{

accum = 0;

for(...)

{

accum += sinc(input);

}

store(accum);

}

}

Main loop in Interpolation-1 kernel

• Presence of expensive combinational
function (sinc()) in the inner most loop

• Use of “loop knobs” provided by HLS tools
to optimize for power and performance

• Derivation of Pareto set highlighting Power-
Performance trade-offs

Retrospective: Latency-Insensitive Design [Carloni et al. ’99]

©Luca Carloni

C1

C2
C3

C4

C5

C6
C7

RS

RS

RS

RS
RS

Latency-Insensitive Design

• is the foundation for the flexible synthesizable RTL
representation

• anticipates the separation of computation from
communication that is proper of TLM with SystemC

– through the introduction of the Protocols & Shell
paradigm

Example: Combining LID and HLS in the Design
of the Debayer Accelerator

©Luca Carloni

• The combination of the ESP interface and
the latency-insensitive protocol enable a
broad HLS-supported design-space
exploration

[C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, System-Level Optimization of
Accelerator Local Memory for Heterogeneous Systems-on-Chip, TCAD ’17]

• For example, for the compute process
– Implementation E is obtained by unrolling loop

L3 for 2 iterations, which requires 2 concurrent
memory-read operations

– Implementation F is obtained by unrolling L3 for
4 iterations to maximize performance at the cost
of more area, but with only 2 memory-read
interfaces; this creates a bottleneck because the
4 memory operations cannot be all scheduled in
the same clock cycle

– Implementation G, which Pareto-dominates
implementation F, is obtained by unrolling L3 for
4 iterations and having 4 memory-read
interfaces to allow the 4 memory-read
operations to execute concurrently

Combines and

• ESP is a platform for heterogeneous SoC
design

• hls4ml automatically generates
accelerators from ML models

Main contributions to ESP:
• Automated integration of hls4ml

accelerators

• Accelerator-accelerator communication

• Accelerator invocation API

Open-source design flow to build and
program SoCs for ML applications.

ESP4ML

38

[D. Giri, K.-L. Chiu, G. Di Guglielmo, P. Mantovani, and L. P. Carloni. ‘’ESP4ML: Platform-Based
Design of Systems-on-Chip for Embedded Machine Learning’’, DATE ’20]

©Luca Carloni

Seamless Integration of Third-Party Accelerators

©Luca Carloni

1
2.1

3.1
3.9

0
1
2
3
4

5

1 NVDLA
1 mem

ctrl

2 NVDLA
2 mem

ctrl

3 NVDLA
3 mem

ctrl

4 NVDLA
4 mem

ctrl

fr
a

m
e

s
 /

 s
e

c
o

n
d

(n

o
rm

a
li

z
e

d
) LeNet

Scaling NVDLA instances and DDR channels
@ 50 MHz

• New design flow of general
applicability

– demonstrated w/ NVIDIA NVDLA

• Transparent accelerator integration
– original software apps can run “as is”

• Linear performance scalability
– when scaling up

NVDLA instances
with DDR channels

[D. Giri et al. ‘’Ariane + NVDLA: Seamless
Third-Party IP Integration with ESP’’,
CARRV’20]

©Luca Carloni
40

ESP Interactive SoC Flow

SoC Integration

…

…

…
accelerator

accelerator

accelerator

In Summary: ESP for Open-Source Hardware
• We contribute ESP to the OSH

community in order to support the
realization of
• more scalable architectures for SoCs

that integrate

• more heterogeneous components,
thanks to a

• more flexible design methodology,
which accommodates different
specification languages and design flows

• ESP was conceived as a heterogeneous
integration platform from the start and
tested through years of teaching at
Columbia University

• We invite you to use ESP for your
projects and to contribute to ESP!

©Luca Carloni

https://www.esp.cs.columbia.edu

System Level Design Group

Thank you from the ESP team!

https://esp.cs.columbia.edu

https://github.com/sld-columbia/esp

https://esp.cs.columbia.edu/
https://github.com/sld-columbia/esp

